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Scope Ambiguities 
■  Every student speaks two foreign languages 

 a. ∀x(student’(x) → ∃y(foreign-language’(y) ∧ speak*(y)(x))) 
b. ∃y(foreign-language’(y) ∧ ∀x(student’(x) → speak*(y)(x))) 

■  Every student didn’t pay attention 

 a. ∀x(student’(x) → ¬pay-attention’(x)) 
b. ¬∀x(student’(x) → pay-attention’(x)) 

■  An American flag stood in front of every building 

■  John is looking for a book about semantics 

■  Marilyn wants to marry a millionaire 
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Scope Ambiguities 

■  Given the standard syntactic analyses and the basic 
semantic construction rules,  we can derive only one scope 
reading for each sentence. 

■  To solve the problem, we can either: 
■  assume a “deep syntactic structure”, as proposed by linguists 

in the past, and also used in standard Montague Grammar 
(Syntactic transformation rule of “Quantifier Raising”) 

■  or modify the semantic construction principles, to make 
quantifier scope (partially) independent of syntactic structure. 

■  Quantifier storage (also called “Cooper Storage”) is the 
standard approach to realize the latter idea. 
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Topicalized Noun Phrases 

NP VP 

S 

NP  V every student 

two languages speaks 
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Topicalized Noun Phrases 

NP VP 

S NPi 

 V every student 

two languages 

speaks 

S 

 xi 
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Topicalized NP: Semantic Construction 

NP VP 

S NPi 

 V every student 

two languages 

speaks 

S 

 xi 

λyλx[speak‘(y)(x)] 
xi 

λx[speak‘(xi)(x)] every-student‘ 

every-student‘(λx[speak‘(xi)
(x)]) two-languages‘ 

every-student‘ :⇔ λF∀x(student’(x) → F(x)) 
two-languages’ :⇔ λP∃2y(language’(y) ∧ P(y))    



„Indexed NP“ Rule 

■  If in a binary branching local syntactic structure  
■  B and C are daughters of A,  
■  B ⇒ β:⟨⟨e,t⟩,t⟩ is an NP with index i,  
■  C ⇒γ:⟨e,t⟩,  
then A⇒ β(λxiγ):t. 
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Semantic Construction 

NP VP 

S NPi 

 V every student 

two languages 

speaks 

S 

 xi 

λyλx[speak‘(y)(x)] 
xi 

λx[speak‘(xi)(x)] every-student‘ 

every-student‘(λx[speak‘(xi)(x)]) 
two-languages‘ 

two-languages‘(λxi(every-student‘(λx[speak‘(xi)(x)]))  
⇔β ∃2y(language’(y)∧∀x(student’(x)→speak’(y)(x))) 



„Indexed NP“ Rule 
■  To provide a syntactic basis for a strictly compositional treatment 

of scope ambiguity, a syntactic rule of “Quantifier Raising” is 
assumed. 

■  Quantifier Raising looks precisely like topicalization. The „only“ 
difference is that the result cannot be seen at the linguistic 
surface, but is on the level of so-called “logical form”, which is 
input to semantic interpretation. (Logical forms are CFG trees, 
not logical expressions!) 

■  Interpretation is done in exactly the same way as in the 
topicalization case. Application of the “Indexed NP” rule is called 
“Quantifying In”. 

■  For several reasons, the logical form treatment of quantifier 
scope is not popular among computational linguists. 
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Quantifier Storage, Basic Idea 

NP VP 

S 

NP  V every student 

two languages speaks 

λyλx[speak‘(y)(x)]	
  

two-languages‘ 

every-student‘ 
⟨λx[speak‘(x2)(x)], {two-languages‘2}⟩ 

⟨speak‘(x2)(x1), {two-languages‘2, every-student‘1}⟩ 

⟨every-student‘(λx1[speak‘(x2)(x1)]), {two-languages‘2}⟩ 

⟨two-languages‘ (λx2[every-student‘(λx1[speak‘(x2)(x1)])]), ∅⟩ 

⇔β ∃2y(language’(y) ∧ ∀x (student’(x) → speak’(y)(x))) 

Storage 

Storage 

Retrieval 

Retrieval 

⟨x2, {two-languages‘2} ⟩ 

⟨x1, {every-student‘1} ⟩ 
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Quantifier Storage: Basic Idea 
■  NL quantifier phrases (in general, NPs) need not be directly 

applied, but can be moved to a quantifier store for later 
application (storage), passed up the syntax tree during the 
composition process, and removed from the store and applied at 
a sentence node (retrieval). 

■  Natural language expressions of type τ are in general assigned 
ordered pairs ⟨α, Δ⟩ as a semantic values, consisting of  
■  a content α ∈ Weτ, and 
■  a quantifier store Δ ⊆ WE⟨⟨e,t⟩,t⟩ 

■  A syntactic representation can have more than one semantic 
value. So, in general, the translation A⇒α reads: “α is among the 
semantic values of A”. 

■  A term α counts as a semantic representation for a sentence if 
we can derive ⟨α, ∅⟩ as its semantic value. 
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Every student reads a book 



13 

Basic Semantic Construction Rules, 
Revised 

■  Let in a binary branching local tree, B and C be (non-NP) 
daughters of A 
■  if  B ⇒ ⟨α, Δ⟩, α ∈ WE⟨σ,τ⟩ 
■  and  C ⇒ ⟨β, Γ⟩, β ∈ WEσ 
■  then  A ⇒ ⟨α(β), Δ ∪ Γ⟩ 

■  Let in a unary branching tree B be daughter of A 
■  if  B ⇒ ⟨α, Δ⟩ 
■  then  A ⇒ ⟨α, Δ⟩ 

■  Let w be lexical expression with mother A 
■  A ⇒ ⟨α, ∅⟩, where α the lexical-semantic entry of w 
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Every student reads a book 

■  (9) ⟨λFλG∃x(F(x) ∧ G(x)), ∅⟩ 

■  (11) ⟨book’, ∅⟩ 

■  (10) ⟨book’, ∅⟩ 

■  (8) ⟨λFλG∃x(F(x) ∧ G(x))(book’), ∅⟩ 

■    ⇔β ⟨λG∃x(book’(x) ∧ G(x)), ∅⟩ 
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Every student reads … (cont’d) 

■  (8) ⟨λG∃x(book’(x) ∧ G(x)), ∅⟩ 

   ⇒S ⟨λP.P(x1), {[λG∃x(book’(x) ∧ G(x))]1}⟩ 
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Semantic Construction [2/3] 

■  Storage: ⟨Q, Δ⟩ ⇒S ⟨λP.P(xi), Δ ∪ {[Q]i}⟩ 
■  if A is an noun phrase with a semantic value ⟨Q, Δ⟩, then select 

a new index i∈N and add ⟨λP.P(xi), Δ ∪ {[Q]i}⟩ as a semantic 
value for A. 

■  Effect of the storage operation: The node is assigned another 
semantic value, where the content of the original value is moved 
to the store, and  the new content is a placeholder (type-raised 
individual variable) of type ⟨⟨e,t⟩,t⟩. 

■  Note: The NP node (8) of the example now has two semantic 
values connected with it (represented by the two lines above). 
Both values can be used in the further composition process: The 
quantifier can be applied either directly, “in situ” (first line), or 
“quantified in” via storage and retrieval (second line). 
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Every student reads … (cont’d) 

■  (8) ⟨λP.P(x1), {[λG∃x(book’(x) ∧ G(x))]1}⟩ 

■  (7) ⟨λQλx(Q(λy(read*(y)(x)))), ∅⟩ 

■  (6) ⟨λQλx(Q(λy(read*(y)(x))))(λP.P(x1)), {[λG∃x(…)]1}⟩ 

■    ⇔β ⟨λx(λP(P(x1))(λy(read*(y)(x)))), {[λG∃x(…)]1}⟩ 

■    ⇔β ⟨λx(λy(read*(y)(x))(x1)), {[λG∃x(…)]1}⟩ 

■    ⇔β ⟨λx(read*(x1)(x)), {[λG∃x(…)]1}⟩ 
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Every student reads … (cont’d) 

■  (6) ⟨λx(read*(x1)(x)), {[λG∃x(book’(x) ∧ G(x))]1}⟩ 

■  (2) ⟨λG∀y(student’(y) → G(y)), ∅⟩ 

■  (1) ⟨λG∀y(student’(y) → G(y))(λx(read*(x1)(x))), {[...]1}⟩ 

■    ⇔β ⟨∀y(student’(y) → λx(read*(x1)(x))(y)), {[...]1}⟩ 

■    ⇔β ⟨∀y(student’(y) → read*(x1)(y)), {[...]1}⟩ 
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Semantic Construction [3/3] 

■  Retrieval: ⟨α, Δ ∪ {[Q]i}⟩ ⇒R ⟨Q(λxi α), Δ⟩ 
■  if A is any sentence with semantic value ⟨α, Δ⟩, and [Q]i ∈ Δ,  

then ⟨Q(λxi α), Δ-{[Q]i }⟩ can be added as a semantic value for 
A. 
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Every student reads … (cont’d) 

■  (1) ⟨∀y(student’(y) → read*(x1)(y)), {[λG∃x(...)]1}⟩ 

■    ⇒R ⟨λG∃x(book’(x) ∧ G(x))(λx1(∀y(… x1 …))), ∅⟩ 

■    ⇔β ⟨∃x(book’(x) ∧ λx1(∀y(… x1 …))(x)), ∅⟩ 

■    ⇔β ⟨∃x(book’(x) ∧ ∀y(student’(y) → read*(x)(y))), ∅⟩ 



Quantifier Storage 

■  Semantic construction using quantifier storage is a non-
deterministic process: Choice points are storage (yes/no?) 
and retrieval (which NP?). 

■  To obtain the set of all possible sentence representations, 
we need an exhaustive search through all options, which is 
highly inefficient. 

■  Underspecification formalisms enable the compact 
representation  and efficient computation of alternative 
scope readings. (➔ Computational Linguistics Course) 
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